Question	Answer		Mark
Number 1(a)	Conversion of MeV to J	(1)	
I (u)	Use of $E_k = \frac{1}{2} mv^2$	(1)	
	Max velocity = $4.1 \times 10^6 \text{ (m s}^{-1}\text{)}$	(1)	3
	Example of calculation		
	$v = \sqrt{\frac{2 \times 1.2 \text{Mev} \times 1.6 \times 10^{-13} \text{J}}{14 \times 1.66 \times 10^{-27} \text{kg}}}$		
	$v = \sqrt{\frac{14 \times 1.66 \times 10^{-27} \text{ kg}}{14 \times 1.66 \times 10^{-27} \text{ kg}}}$		
	$velocity = 4.06 \times 10^6 \mathrm{m s^{-1}}$		
1(b)(i)	Correct momentum of any particle seen e.g. Nux (must contain u)	(1)	
	Correct equation from conservation of momentum (allow even if <i>u</i> not	(1)	
	shown) Rearrange for z (dependent on second mark)	(1)	3
	Kearrange for 2 (dependent on second mark)	(1)	5
	Example of calculation		
	Nux = 14uy + Nuz		
	$N_{z} = N_{x} - 14y$		
1(b)(ii)	Kinetic energy is conserved	(1)	1
1(b)(iii)	See $\frac{1}{2} Nux^2$ Or $\frac{1}{2} Nuz^2$ Or $\frac{1}{2} 14uy^2$	(1)	
	Clear statement that		
	E_k nitrogen atom = E_k neutron before – E_k neutron after		
	Or E_k nitrogen atom = E_k lost by neutron	(1)	2
1(c)(i)	Use of equation, N in the denominator must be included,		
	given with $y = 3.0 \ge 10^7$ Or $y = 4.1 \ge 10^6$	(1)	
	In equation given use of:		
	$N + 1$ with $y = 3.0 \times 10^7$		
	Or N + 14 with $y = 4.1 \times 10^6$	(1)	
	$11 + 14 \text{ with } y = 4.1 \times 10$	(1)	
	In equation given use of:		
	N + 1 with $y = 3.0 \times 10^7$		
	And N + 14 with $y = 4.1 \times 10^6$	(1)	3
	Example of calculation Example of calculation $20 \times 10^7 (01 \times 1)$		
	For hydrogen $2Nx = 3.0 \times 10^{7} (N + 1)$ For nitrogen $2Nx = 4.1 \times 10^{6} (N + 14)$		
	Equating gives 4.1×10^6 (N + 14) = 3.0×10^7 (N + 1)		
	(so N = 1.06)		
1(c)(ii)	Collision might not be elastic		
	Or Speed (of particles) approaches speed of light (so mass increases)	(1)	1
	Total for question		13

Question Number	Answer		Mark
2 (a)	Baryon	(1)	1
2(b)	$(+2/3 - 1/3 + 2/3) = +1 / +1e / +e / (+)1.6 \times 10^{-19} $ [Do not allow 1, 1e, e]	(1)	1
2 (c)	$(B^0 \rightarrow)$ [No mark for LHS but must have an equation X = Y + Z] For RHS A^+ and A^+ or A^+	(1)	
	$ \begin{array}{c} \Lambda^+ & \text{only [do not credit alternatives e.g. } \lambda^+] \\ \bar{p} & \text{only [do not credit alternatives e.g. } p^-, p^{+/-}] \end{array} $	(1) (1)	2
	Total for question		4

Question Number	Answer	Mark
3*	(QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	
	 (After X) no tracks / track ceases (at X) / tracks can't be seen (after X) (1) [allow lines for tracks] (so) uncharged/neutral particles produced OR only charged particles give tracks . (1) At least one of the correct further events identified. [i.e. at the 'V' points] [in words or on diagram] (1) Both of the correct further events identified. 	4
	Total for question	4

Question Number	Answer		Mark
4 (a)	Cannot be split further/has no internal structure / not made up of other particles (1		1
4(b)	At least 4 radial straight lines [drawn with a ruler, need not touch particle](1Equispaced [very closely by eye](1Arrow pointing inwards(1[ignore any words and mark the diagram only](1)	3
4(c)	Convert MeV to J $[\times 1.6 \times 10^{-13}]$ (1 Divide by c^2 $[\div 9 \times 10^{16}]$ (1 answer 205 - 214 (1 [Reverse calculation from 200 loses the third mark] (1 <u>Example of calculation</u> 106 MeV = 106 x 1.6 x10^{-13} J $= 106 x 1.6 x10^{-13} J / (3 x 10^8 m s^{-1})^2$ (3 x 10^8 m s^{-1})^2 ratio = 1.88 x 10^{-28} kg / 9.11 x 10^{-31} kg [May convert electron to 0.51 MeV])	3
4(d)	Use of $F = q^2/4\pi\epsilon_0 r^2$ or $F = kq^2/r^2$ with $q = 1.6 \times 10^{-19}$ and $r = 2.7 \times 1$ [ignore power of 10 error] (1 $F = (-) 3.2 \times 10^{-3}$ N (1) <u>Example of calculation</u> $F = (9 \times 10^9$ N m ² C ⁻²) (1.6 × 10 ⁻¹⁹ C) ² / (2.7 × 10 ⁻¹³ m) ²)	2
4(e)	Mention of energy levels/states(1)Muon/electron jumps down / drops down /returns to original state(1)Large ΔE / large photon energy (<i>hf</i>)(1))	3
	Total for question		12

5(i)	С
5(ii)	Α
5(iii)	D

Question	Answer	Mark
Number	$\overline{\mathbf{x}}$ (d)	1
6 (a)	ud identified (1)	1
6 (b)	Conversion of G (1) Conversion of either eV or divided by c^2 (1) 2.5 x 10 ⁻²⁸ (kg) (1) eg $m = 0.14 \times 10^9 \times 1.6 \times 10^{-19} / 9 \times 10^{16}$	3
6 (c)	QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence	QWC
	Electric fields: Electric field provides force on the charge/proton (1) gives energy to /work done / <i>E</i> = <i>qV</i> / accelerate protons (1)	
	Magnetic fields: Force on moving charge/proton (1) Produces circular path/centripetal force (1)	4
	labelled diagram showing Dees with E field indicated across gap OR B field through Dees (1) E field is reversed/alternates (1)	1 max
6 (d)	QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence	QWC
	momentum (1) Zero / negligible momentum before (1) To conserve momentum (fragments go in all directions) (1)	
		3
	Total for question	12

Question	Answer		Mark
Number			
*7	(QWC – Work must be clear and organised in a logical manner using technical		
	wording where appropriate)		
	Max 6		
	Fixed target		
	There is momentum before the collision so there must be momentum after		
	the collision.	(1)	
	So particle(s) created must have some kinetic energy	(1)	
	So not all KE converted to mass	(1)	
	Colliding beams		
	(If particles have the same mass and speed), total initial momentum is zero	(1)	
	Momentum after collision will be zero	(1)	
	If one stationary particle is created	(1)	
	All of the kinetic energy of the particle is converted to mass	(1)	6
	Total for question		6

Question	Answer	Mark
Number		
8(a)	The wavelength (associated) with a particle/electron (1)	
	(1) with a given momentum	
	Or	
	$\lambda = h/p \tag{1}$	
	all terms defined (1)	2
8(b)(i)	Use of $E_k = eV$ (1)	
	Use of $E_k = p^2/2m$ Or use of $E_k = mv^2/2$ and $p = mv$ (1)	
	Momentum = $1.21 \times 10^{-23} \text{ kg m s}^{-1}$ (1)	3
	Example of calculation	
	$\frac{\text{Example of calculation}}{E_{k} = 1.6 \times 10^{-19} \text{ C} \times 500 \text{ V}}$	
	$p^{2} = 2 m E_{k} = 2 \times 9.11 \times 10^{-31} \text{ kg} \times (1.6 \times 10^{-19} \times 500) \text{ J}$	
	$p = 1.21 \times 10^{-23} \text{ kg m s}^{-1}$	
8(b)(ii)	Use of $\lambda = h/p$ (1)	
	$\lambda = 5.49 \times 10^{-11} \text{ m (ecf value of } p \text{ from (i))} $ (1)	2
	(show that value gives 6.63×10^{-11} m)	
	Example of calculation	
	$p = 6.63 \times 10^{-34} \text{ J s} / 1.21 \times 10^{-23} \text{ kg m s}^{-1}$	
	$\lambda = 5.49 \times 10^{-11} \mathrm{m}$	
	Total for question	7