Question Number	Answer		Mark
1(a)	Conversion of MeV to J Use of $E_{k}=1 / 2 m v^{2}$ Max velocity $=4.1 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Example of calculation $\begin{aligned} & v=\sqrt{\frac{2 \times 1.2 \mathrm{Mev} \times 1.6 \times 10^{-13} \mathrm{~J}}{14 \times 1.66 \times 10^{-27} \mathrm{~kg}}} \\ & \text { velocity }=4.06 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \hline(1) \\ & \text { (1) } \\ & (1) \end{aligned}$	3
1(b)(i)	Correct momentum of any particle seen e.g. Nux (must contain u) Correct equation from conservation of momentum (allow even if u not shown) Rearrange for z (dependent on second mark) Example of calculation $\begin{aligned} & \mathrm{Nux}=14 u y+\mathrm{N} u z \\ & \mathrm{~N} z=\mathrm{N} x-14 y \end{aligned}$	(1) (1) (1)	3
1(b)(ii)	Kinetic energy is conserved	(1)	1
1(b)(iii)	See $1 / 2$ Nux 2 Or $1 / 2$ Nuz 2 Or $1 / 214 u y^{2}$ Clear statement that E_{k} nitrogen atom $=E_{\mathrm{k}}$ neutron before $-E_{\mathrm{k}}$ neutron after Or E_{k} nitrogen atom $=E_{\mathrm{k}}$ lost by neutron		2
1(c)(i)	Use of equation, N in the denominator must be included, given with $y=3.0 \times 10^{7}$ Or $y=4.1 \times 10^{6}$ In equation given use of: $\mathrm{N}+1$ with $y=3.0 \times 10^{7}$ Or $\mathrm{N}+14 \text { with } y=4.1 \times 10^{6}$ In equation given use of: $\mathrm{N}+1$ with $y=3.0 \times 10^{7}$ And $\mathrm{N}+14 \text { with } y=4.1 \times 10^{6}$ Example of calculation For hydrogen $2 \mathrm{~N} x=3.0 \times 10^{7}(\mathrm{~N}+1)$ For nitrogen $2 \mathrm{~N} x=4.1 \times 10^{6}(\mathrm{~N}+14)$ Equating gives $4.1 \times 10^{6}(\mathrm{~N}+14)=3.0 \times 10^{7}(\mathrm{~N}+1)$ (so $\mathrm{N}=1.06$)	(1) (1) (1)	3
1(c)(ii)	Collision might not be elastic Or Speed (of particles) approaches speed of light (so mass increases)		1
	Total for question		13

Question Number	Answer		Mark
2(a)	Baryon	(1)	1
2(b)	$(+2 / 3-1 / 3+2 / 3)=+1 /+1 \mathrm{e} /+\mathrm{e} /(+) 1.6 \times 10^{-19} \underline{\mathrm{C}}$ [Do not allow 1, 1e, e]	(1)	1
2(c)	For RHS$\begin{array}{ll} \boldsymbol{\Lambda}^{+} & \text {only [do not credit alternatives e.g. } \lambda^{+} \text {] } \tag{1}\\ \overline{\mathrm{p}} & \text { only [do not credit alternatives e.g. } \mathrm{p}^{-}, \overline{\mathrm{p}}^{+/-} \text {] } \end{array}$		2
	Total for question		4

Question Number	Answer	Mark
3^{*}	(QWC - Work must be clear and organised in a logical manner using technical wording where appropriate) (After X) no tracks / track ceases (at X) / tracks can't be seen (after X) (1) (allow lines for tracks] (so) uncharged/neutral particles produced OR only charged particles give tracks . At least one of the correct further events identified. [i.e. at the 'V' points] [in words or on diagram] Both of the correct further events identified.	$\mathbf{4}$

Question Number	Answer	Mark
4(a)	Cannot be split further/has no internal structure / not made up of other particles	1
4(b)	At least 4 radial straight lines [drawn with a ruler, need not touch particle] Equispaced [very closely by eye] Arrow pointing inwards [ignore any words and mark the diagram only]	3
4(c)	Convert MeV to J $\left[\times 1.6 \times 10^{-13}\right]$ Divide by c^{2} $\left[\div 9 \times 10^{16}\right]$ answer 205-214 answer 205-214 [Reverse calculation from 200 loses the third mark] Example of calculation $\begin{aligned} 106 \mathrm{MeV} & =106 \times 1.6 \times 10^{-13} \mathrm{~J} \\ = & 106 \times 1.6 \times 10^{-13} \mathrm{~J} /\left(3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\ \text { ratio }= & 1.88 \times 10^{-28} \mathrm{~kg} / 9.11 \times 10^{-31} \mathrm{~kg} \end{aligned}$ [May convert electron to 0.51 MeV]	3
4(d)	Use of $F=q^{2} / 4 \pi \varepsilon_{0} r^{2}$ or $F=k q^{2} / r^{2}$ with $q=1.6 \times 10^{-19}$ and $r=2.7 \times 10^{-13}$ [ignore power of 10 error] $\begin{equation*} F=(-) 3.2 \times 10^{-3} \mathrm{~N} \tag{1} \end{equation*}$ Example of calculation $F=\left(9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}\right)\left(1.6 \times 10^{-19} \mathrm{C}\right)^{2} /\left(2.7 \times 10^{-13} \mathrm{~m}\right)^{2}$	2
4(e)	Mention of energy levels/states Muon/electron jumps down / drops down /returns to original state Large $\Delta \mathrm{E}$ / large photon energy ($h f$) - (1)	3
	Total for question	12

5(i)	C
5(ii)	A
5(iii)	D

Question Number	Answer	Mark
6(a)	ud identified (1)	$\mathbf{1}$
$\mathbf{6 (b)}$	Conversion of G (1) Conversion of either eV or divided by c $2.5 \times 10^{-28}(\mathrm{~kg})(\mathbf{1})$ eg $\mathrm{m}=0.14 \times 10^{9} \times 1.6 \times 10^{-19} / 9 \times 10^{16}$	$\mathbf{3}$
$\mathbf{6 (c)}$	QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence	QWC
	Electric fields: Electric field provides force on the charge/ proton (1) gives energy to / work done / E = qV/ accelerate protons (1) Magnetic fields: Force on moving charge/ proton (1) Produces circular path/ centripetal force (1) labelled diagram showing Dees with E field indicated across gap OR B field through Dees (1) E field is reversed/ alternates (1)	$\mathbf{1 ~ m a x ~}$
$\mathbf{6 (d)}$	QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence	$\mathbf{Q W C}$
	momentum (1) Zero / negligible momentum before (1) To conserve momentum (fragments go in all directions) (1)	$\mathbf{4}$
	$\mathbf{3}$	

Question Number	Answer		Mark
$* 7$	(QWC - Work must be clear and organised in a logical manner using technical wording where appropriate) Max 6 Fixed target There is momentum before the collision so there must be momentum after the collision. So particle(s) created must have some kinetic energy So not all KE converted to mass Colliding beams (If particles have the same mass and speed), total initial momentum is zero Momentum after collision will be zero If one stationary particle is created All of the kinetic energy of the particle is converted to mass	(1)	(1)

Question Number	Answer		Mark
8(a)	The wavelength (associated) with a particle/electron with a given momentum Or $\lambda=h / p$ all terms defined	(1) (1) (1) (1)	2
8(b)(i)	Use of $E_{\mathrm{k}}=e \mathrm{~V}$ Use of $E_{\mathrm{k}}=p^{2} / 2 m$ Or use of $E_{\mathrm{k}}=m v^{2} / 2$ and $p=m v$ Momentum $=1.21 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$ $\begin{aligned} & \text { Example of calculation } \\ & E_{\mathrm{k}}=1.6 \times 10^{-19} \mathrm{C} \times 500 \mathrm{~V} \\ & p^{2}=2 \mathrm{~m} E_{\mathrm{k}}=2 \times 9.11 \times 10^{-31} \mathrm{~kg} \times\left(1.6 \times 10^{-19} \times 500\right) \mathrm{J} \\ & p=1.21 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(1) (1) (1)	3
8(b)(ii)	Use of $\lambda=h / p$ $\lambda=5.49 \times 10^{-11} \mathrm{~m}$ (ecf value of p from (i)) (show that value gives $6.63 \times 10^{-11} \mathrm{~m}$) Example of calculation $\begin{aligned} & p=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} / 1.21 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \\ & \lambda=5.49 \times 10^{-11} \mathrm{~m} \end{aligned}$	(1) (1)	2
	Total for question		7

